Солнечная энергия


СОДЕРЖАНИЕ:


Карта солнечного излучения

   Часто говорят, что новое - хорошо забытое старое. Как ни странно, к солнечной тепловой энергии эти слова тоже относятся. Раскопки археологов показали, что в стенах бань и некоторых других построек Древнего Рима были проложены каналы, по которым проходил теплый воздух от нагреваемой солнечным излучением части зданий и создавал комфортную температуру во всех помещениях. Хотя многие из нас этого и не подозревают, способ получения электроэнергии из солнечного света известен более ста лет. Явление фотоэлектричества впервые наблюдал Эдмон Беккерель в 1839г. Проводя серию экспериментов по электричеству, он погрузил 2 металлических электрода в проводящий раствор и подвергал установку воздействию солнечного света. Между электродами возникло небольшое электрическое напряжение. Появление в начале 50-х годов солнечных элементов, разработанных в лаборатории Белла, произвело революцию в электронной промышленности.


   Солнечная энергетика — направление нетрадиционной энергетики, основанное на непосредственном использованиисолнечного излучения для получения энергии в каком-либо виде. Солнечная энергетика использует неисчерпаемый источник энергии и является экологически чистой, то есть не производящей вредных отходов. Производство энергии с помощью солнечных электростанций хорошо согласовывается с концепцией распределённого производства энергии.

    Солнечные установки могут быть предназначены для отопления и горячего водоснабжения жилых домов. Солнечные энергетические установки способны сэкономить дорогостоящее минеральное топливо, благодаря разумному использованию энергии солнечного излучения. Представление о солнечном доме (в котором теплоснабжение и горячее водоснабжение, осуществляемое при помощи солнечной энергии) стало широко известно. Но настоящих солнечных домов, где полностью отработана система отопления и охлаждения, еще сравнительно немного, и сделать их экономически оправданными совсем не просто. Однако очевиден тот факт, что природных запасов нефти и угля на земном шаре не хватит на длительный срок и дальнейшая техническая программа неразрывно связана с необходимостью экономии энергии.

Способы получения электричества и тепла из солнечного излучения:


  • фотовольтаика — получение электроэнергии с помощью фотоэлементов;
  • гелиотермальная энергетика — нагревание поверхности, поглощающей солнечные лучи, и последующее распределение и использованиетепла (фокусирование солнечного излучения на сосуде с водой для последующего использования нагретой воды в отоплении или в паровых электрогенераторах). В качестве особого вида станций гелиотермальной энергетики принято выделять солнечные системы концентрирующего типа (CSP - Concentrated solar power). В этих установках энергия солнечных лучей с помощью системы линз и зеркал фокусируется в концентрированный луч солнца. Этот луч солнца используется как источник тепловой энергии для нагрева рабочей жидкости, которая расходуется для электрогенерации по аналогии с обычными ТЭЦ или накапливается для сохранения энергии. Преобразование солнечной энергии в электричество осуществляется с помощью тепловых машин:
  • паровые машины (поршневые или турбинные), использующие водяной пар, углекислый газ, пропан-бутан, фреоны;
  • двигатель Стирлинга;
  • термовоздушные электростанции (преобразование солнечной энергии в энергию воздушного потока, направляемого на турбогенератор).
  • солнечные аэростатные электростанции (генерация водяного пара внутри баллона аэростата за счет нагрева солнечным излучением поверхности аэростата, покрытой селективно-поглощающим покрытием). Преимущество — запаса пара в баллоне достаточно для работы электростанции в темное время суток и в ненастную погоду.

Достоинства и недостатки


Достоинства:

  • Общедоступность и неисчерпаемость источника.
  • Теоретически, полная безопасность для окружающей среды, хотя существует вероятность того, что повсеместное внедрение солнечной энергетики может изменить альбедо(характеристику отражательной (рассеивающей) способности) земной поверхности и привести к изменению климата (однако при современном уровне потребления энергии это крайне маловероятно).

Недостатки:

  • Зависимость от погоды и времени суток.
  • Как следствие необходимость аккумуляции энергии.
  • При промышленном производстве -- необходимость дублирования солнечных ЭС маневренными ЭС сопоставимой мощности.
  • Высокая стоимость конструкции, связанная с применением редких элементов (к примеру, индий и теллур).
  • Необходимость периодической очистки отражающей поверхности от пыли.
  • Нагрев атмосферы над электростанцией.

Распространение солнечной энергетики


В 2010 году 2,7 % электроэнергии Испании было получено из солнечной энергии.

В 2010 году 2 % электроэнергии Германии было получено из фотоэлектрических установок.

В 2011 году около 3 % электроэнергии Италии было получено из фотоэлектрических установок.

В декабре 2011 года на Украине завершено строительство последней, пятой, 20-мегаваттной очереди солнечного парка в Перово, в результате чего его суммарная установленная мощность возросла до 100 МВт. Солнечный парк Перово в составе пяти очередей стал крупнейшим парком в мире по показателям установленной мощности. За ним следуют канадская электростанция Sarnia (97 МВт), итальянская Montalto di Castro (84,2 МВт) и немецкая Finsterwalde (80,7 МВт). Замыкает мировую пятерку крупнейших фотоэлектрических парков другой проект на Украине - 80-мегаваттная электростанция Охотниково в Сакском районе Крыма.

Первая в России солнечная электростанция мощностью 100 кВт была запущена в сентябре 2010 года в Белгородской области.

Перспективы солнечной энергетики


   Сгенерированная на основе солнечного излучения энергия гипотетически сможет к 2050 году обеспечить 20-25 % потребностей человечества в электричестве и сократит выбросы углекислоты. Как полагают эксперты Международного энергетического агентства (IEA), солнечная энергетика уже через 40 лет при соответствующем уровне распространения передовых технологий будет вырабатывать около 9 тысяч тераватт-часов — или 20-25 % всего необходимого электричества, и это обеспечит сокращение выбросов углекислого газа на 6 млрд тонн ежегодно.

   Альтернативное мнение на перспективы солнечной энергетики через 40 лет

   Процент обеспечения потребностей человечества к 2050 году электроэнергией, полученной на СЭС - это вопрос стоимости 1 кВтч при установке солнечной электростанции "под ключ" и развитости мировой энергетической системы, а также сравнительной привлекательности других способов получения электроэнергии. Гипотетически это может быть от 1% до 80%. Одно из чисел в этом диапазоне точно будет соответствовать истине.

   Когда углеводородное сырье станет действительно дорогим, его уже не будут массово использовать как топливо, поэтому нефти как сырья для химической промышленности хватит на срок, значительно превышающий 40 лет.

  Энергоокупаемость солнечной электростанции значительно меньше 30 лет (особенно, если установить ее в пустыне Сахара). Так, для США, при средней мощности солнечного излучения в 1700 кВт·ч на кв.м в год, энергоокупаемость поликристаллического кремниевого модуля с КПД 12% составляет менее 4 лет (данные на январь 2011) [5].




Россия,  Республика  Мордовия, г. Саранск

© 2016 Все права защищены